728x90

 최근 딥러닝 공부를 하면서 합성곱 신경망에 대한 전반적인 이론들을 살펴보았고, 최근 자연어 처리를 위한 순환 신경망에 대해서 정리해보고 있다. 하지만 합성곱 신경망의 경우에는 예전부터 조금씩 본적이 있었지만, 순환 신경망의 경우 합성곱 신경망 만큼 친숙한 개념이 아니어선지 생각보다 진도 나가기가 너무 힘들더라.

 

 분명 지지난주 신경망 학습 방법들에 대해서 정리할때 까지만 해도 지금 보다는 의역이 잘 되는 편이었는데, 여기서 설명하는 로직이 잘 이해가 되지 않아서인가 의역이 제대로 되지도 않고 진행 속도가 크게 느려졌다. 그나마 다행인 점은 그동안 너무 하기 싫고 힘들었던 순환 신경망이 많이 늦어지기는 했지만 조금씩 조금씩 본 덕에 조금은 이해는 됬고, 정리하는 속도도 아주 약간은 빨라진것 같다.

 

 하지만 이 부분에서 전에 진행하던 속도보나 너무 늦춰지다보니 시간을 너무 많이 지체해버리긴 했다. 다른 공부도 같이 병행을 하기는 해야하지만. 지금 딥러닝 이론에 나오는 내용들이 다양한 논문들에 나온 방법들을 정리한 것이기도 하고, 그렇다고 딥러닝 실습을 하자니 이런 내용을 이해하지 않고서는 왜 딥러닝 프레임워크로 신경망 모델링을 그런식으로 하는지 알수가 없으니 이 부분은 짚고 넘어갈수 밖에 없다고 생각한다.

 

 한 강의만 가지고 몇일, 한두주씩 시간을 낭비해버리고 있으면서 차라리 다른 사람이 정리한걸 참고하면 되지 않나 생각도 들기는 하지만 괜한 고집 때문인지, 혼자서 이걸 해내고 싶어선지 남의 것을 보고 넘어가고 싶지는 않다. 분명 내것 보다 훨씬 정리 잘한 사람도 많기는 하지만, 내가 억지로 붙들고 이해하려고해서 살펴본것과 남이 이쁘게 정리한걸 보는것과 공부하는데서 느낌도 다르고..

 

 과하게 시간을 낭비하는것 같긴한데, 아닐수도 있고 마음 먹기 나름인 문제이긴 하지만 너무 편한 환경에 놓은게 가장 큰 것 같다.

 

 

300x250

+ Recent posts